首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11641篇
  免费   1123篇
  2021年   148篇
  2020年   99篇
  2019年   110篇
  2018年   168篇
  2017年   143篇
  2016年   262篇
  2015年   467篇
  2014年   483篇
  2013年   614篇
  2012年   745篇
  2011年   674篇
  2010年   467篇
  2009年   424篇
  2008年   561篇
  2007年   527篇
  2006年   492篇
  2005年   505篇
  2004年   497篇
  2003年   441篇
  2002年   437篇
  2001年   234篇
  2000年   248篇
  1999年   210篇
  1998年   153篇
  1997年   140篇
  1996年   114篇
  1995年   131篇
  1994年   107篇
  1993年   116篇
  1992年   173篇
  1991年   175篇
  1990年   174篇
  1989年   164篇
  1988年   140篇
  1987年   160篇
  1986年   139篇
  1985年   126篇
  1984年   134篇
  1983年   94篇
  1982年   74篇
  1981年   90篇
  1980年   65篇
  1979年   99篇
  1978年   54篇
  1977年   93篇
  1976年   64篇
  1975年   61篇
  1974年   58篇
  1973年   74篇
  1971年   62篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
The human sarco/endoplasmic reticulum (ER) Ca(2+)ATPase 3 (SERCA3) gene gives rise to SERCA3a-3f isoforms, the latter inducing ER stress in vitro. Here, we first demonstrated the co-expression of SERCA3a, -3d and -3f proteins in the heart. Evidence for endogenous proteins was obtained by using isoform-specific antibodies including a new SERCA3d-specific antibody, and either Western blotting of protein lysates or immunoprecipitation of membrane proteins. An immunolocalization study of both left ventricle tissue and isolated cardiomyocytes showed a distinct compartmentalization of the SERCA3 isoforms, as a uniform distribution of SERCA3a was detected while -3d and -3f isoforms were observed around the nucleus and in close vicinity of plasma membrane, respectively. Second, we studied their expressions in failing hearts including mixed (MCM) (n=1) and idiopathic dilated (IDCM) cardiomyopathies (n=4). Compared with controls (n=5), similar expressions of SERCA3a and -3d mRNAs were observed in all patients. In contrast, SERCA3f mRNA was found to be up-regulated in failing hearts (125+/-7%). Remarkably, overexpression of SERCA3f paralleled an increase in ER stress markers including processing of X-box-binding protein-1 (XBP-1) mRNA (176+/-24%), and expression of XBP-1 protein and glucose-regulated protein (GRP)78 (232+/-21%). These findings revisit the human heart's Ca(2+)ATPase system and indicate that SERCA3f may account for the mechanism of ER stress in vivo in heart failure.  相似文献   
993.
Potato tuber (Solanum tuberosum) mitochondria (PTM) have a mitochondrially bound hexokinase (HK) activity that exhibits a pronounced sensitivity to ADP inhibition. Here we investigated the role of mitochondrial HK activity in PTM reactive oxygen species generation. Mitochondrial HK has a 10-fold higher affinity for glucose (Glc) than for fructose (KMGlc = 140 μm versus KMFrc = 1,375 μm). Activation of PTM respiration by succinate led to an increase in hydrogen peroxide (H2O2) release that was abrogated by mitochondrial HK activation. Mitochondrial HK activity caused a decrease in the mitochondrial membrane potential and an increase in oxygen consumption by PTM. Inhibition of Glc phosphorylation by mannoheptulose or GlcNAc induced a rapid increase in H2O2 release. The blockage of H2O2 release sustained by Glc was reverted by oligomycin and atractyloside, indicating that ADP recycles through the adenine nucleotide translocator and F0F1ATP synthase is operative during the mitochondrial HK reaction. Inhibition of mitochondrial HK activity by 60% to 70% caused an increase of 50% in the maximal rate of H2O2 release. Inhibition in H2O2 release by mitochondrial HK activity was comparable to, or even more potent, than that observed for StUCP (S. tuberosum uncoupling protein) activity. The inhibition of H2O2 release in PTM was two orders of magnitude more selective for the ADP produced from the mitochondrial HK reaction than for that derived from soluble yeast (Saccharomyces cerevisiae) HK. Modulation of H2O2 release and oxygen consumption by Glc and mitochondrial HK inhibitors in potato tuber slices shows that hexoses and mitochondrial HK may act as a potent preventive antioxidant mechanism in potato tubers.Production of reactive oxygen species (ROS) is an unavoidable consequence of aerobic respiration (Chance et al., 1979). The mitochondrial electron transport system (ETS) is the major site of ROS production in mammalian and nonphotosynthesizing plant cells (Puntarulo et al., 1991; Halliwell and Gutteridge, 2007). Depending on the mitochondrial respiratory states, a small portion of the consumable oxygen is partially reduced to generate ROS (Skulachev, 1996; Liu, 1997; Turrens, 1997; Møller, 2001; Considine et al., 2003; Smith et al., 2004). In plants, the monoelectronic reduction of oxygen by ETS leads to the production of superoxide radicals (O2·−) that can be dismutated by SOD, producing hydrogen peroxide (H2O2), and further decomposed by catalase and/or ascorbate-glutathione peroxidase cycles (Møller, 2001). An imbalance between the ROS production and antioxidant defenses can lead to an oxidative stress condition. Increased levels of ROS may be a consequence of the action of plant hormones, environmental stress, pathogens, or high levels of sugars and fatty acids (Bolwell et al., 2002; Couée et al., 2006; Gechev et al., 2006; Liu et al., 2007; Rhoads and Subbaiah, 2007). These conditions may lead to storage deterioration or impairment of seedling growth decreasing on crop yield. To avoid the harmful accumulation of ROS or to fine tune the steady-state levels of ROS, various enzymatic systems control the rate of ROS production in mitochondria (Schreck and Baeuerle, 1991; Møller, 2001).Mitochondrial ROS production is highly dependent on the membrane potential (ΔΨm) generated by the proton gradient formed across the inner mitochondrial membrane. High ΔΨm was shown to stimulate ROS production when the ETS is predominantly in a reduced state (i.e. when NADH, FADH2, and O2 are present in abundance but ADP or Pi levels are low). This condition is reached in resting metabolic states after a full oxidation of Glc or fatty acids. Stimulating electron flow by decreasing ΔΨm, either by the use of uncouplers or by coupling respiration to ATP synthesis, slows the ROS generation rate (Boveris and Chance, 1973; Korshunov et al., 1997). It has been observed that in isolated potato tuber (Solanum tuberosum) mitochondria (PTM) the uncoupling protein (referred to as PUMP in plants, or UCP in animals) causes a small decrease in ΔΨm when this proton carrier protein is activated by the presence of anionic fatty acids, a condition that blocks ROS generation (Vercesi et al., 1995, 2006). Nucleotides, such as ATP, antagonize this effect (Considine et al., 2003; Vercesi et al., 2006). On the other hand, fluctuations in free hexose levels due to environmental or developmental conditions (Morrell and ap Rees, 1986; Geigenberger and Stitt, 1993; Renz and Stitt, 1993) lead to variations in the oxygen consumption rate in heterotrophic tissues of plant (Brouquisse et al., 1991; Dieuaide et al., 1992). As a result, ROS-producing pathways may be either stimulated or repressed (Couée et al., 2006). Unlike PUMP activity, which is activated by an excess of free fatty acids, a specific mechanism for mitochondrial ROS production caused by an excess of hexose remains elusive.The metabolism of free hexoses begins by their phosphorylation in a reaction catalyzed by the hexokinase (HK):HK is a ubiquitous enzyme found in many organisms. In plants, the binding mechanism of HK to the outer mitochondrial membrane is not fully established, but some reports indicate that it may differ considerably from those properties described for mammal cells (Dry et al., 1983; Miernyk and Dennis, 1983; Rezende et al., 2006). It has been shown that in several mature and developing plant tissues, multiple HK isoforms are expressed with different kinetic properties and subcellular localizations. The HKs are found in cytosol, bound to the mitochondrial membrane, or in stroma of plastids in plant cells (Miernyk and Dennis, 1983; Galina et al., 1995; Damari-Weissler et al., 2007). Beyond its obvious role in glycolysis regulation, HK activity may also function as a sugar sensor, triggering a signal transduction pathway in plants (Rolland et al., 2006).In mammals, HK types I and II are associated with the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC) and adenine nucleotide transporter (ANT). These associations were found in tissues with a high energy demand, such as heart, brain, and tumor cells (Arora and Pedersen, 1988; BeltrandelRio and Wilson, 1992; Wilson, 2003). In addition, recent evidence in mammalian cells has shown that binding of HK to VDAC located at the outer mitochondrial membrane is somehow involved in the protection against proapoptotic stimuli (Nakashima et al., 1986; Gottlob et al., 2001; Vander Heiden et al., 2001; Pastorino et al., 2002; Cesar and Wilson, 2004). Similar observations were reported for tobacco (Nicotiana tabacum) plant mitochondrial HK (mt-HK; Kim et al., 2006). However, it has been shown that drugs such as the fungicide clotrimazole and the anesthetic thiopental, which promptly disrupt the association between mt-HK and VDAC in mammalian mitochondria, are unable to promote this effect in maize (Zea mays) root mitochondria (Rezende et al., 2006). These observations suggest a different type of association of mt-HK with plant mitochondria. The binding of mt-HK with mitochondria in many plants involves a common N-terminal hydrophobic membrane anchor domain of about 24 amino acids that is related to the membrane targeting, but the exact mechanism of association is unknown (Damari-Weissler et al., 2007).Recently, our group demonstrated that mt-HK activity plays a key preventive antioxidant role by reducing mitochondrial ROS generation through a steady-state ADP recycling mechanism in rat brain neurons. The mitochondrial ADP recycling leads to a decrease in the ΔΨm coupled to the synthesis of ATP by oxidative phosphorylation (da-Silva et al., 2004; Meyer et al., 2006).Although plant HK is recognized to fulfill a catalytic function, the role of mt-HK activity in the regulation of both mitochondrial respiration and ROS production in plants is unknown. Recently, an authentic HK activity was detected in PTM (Graham et al., 2007) and its involvement in potato tuber glycolysis suggested, but its involvement in PTM ROS generation was not explored. We then raise the hypothesis that HK bound to PTM would contribute to produce a steady-state ADP recycling that regulates ROS formation. However, whether this association is capable of controlling the rate of ROS generation in plant mitochondria is unknown. Here, we aim to investigate the role of mt-HK activity in PTM physiology. The data indicate that mt-HK activity plays a key role as a regulator of ROS levels in respiring plant tissues exposed to high hexose levels.  相似文献   
994.
Two rounds of whole-genome duplications are thought to haveplayed an important role in the establishment of gene repertoiresin vertebrates. These events occurred during chordate evolutionafter the split of the urochordate and cephalochordate lineagesbut before the radiation of extant gnathostomes (jawed vertebrates).During this interval, diverse agnathans (jawless fishes), includingcyclostomes (hagfishes and lampreys), diverged. However, thereis no solid evidence for the timing of these genome duplicationsin relation to the divergence of cyclostomes from the gnathostomelineage. We conducted cDNA sequencing in diverse early vertebratesfor members of homeobox-containing (Dlx and ParaHox) and othergene families that would serve as landmarks for genome duplications.Including these new sequences, we performed a molecular phylogeneticcensus using the maximum likelihood method for 55 gene families.In most of these gene families, we detected many more gene duplicationsbefore the cyclostome–gnathostome split, than after. Manyof these gene families (e.g., visual opsins, RAR, Notch) havemultiple paralogs in conserved, syntenic genomic regions thatmust have been generated by large-scale duplication events.Taken together, this indicates that the genome duplicationsoccurred before the cyclostome–gnathostome split. We proposethat the redundancy in gene repertoires possessed by all vertebrates,including hagfishes and lampreys, was introduced primarily bygenome duplications. Apart from subsequent lineage-specificmodifications, these ancient genome duplication events mightserve generally to distinguish vertebrates from invertebratesat the genomic level.  相似文献   
995.
Previous studies have suggested the recovery of phosphocreatine (PCr) after exercise is at least second-order in some conditions. Possible explanations for higher-order PCr recovery kinetics include heterogeneity of oxidative capacity among skeletal muscle fibers and ATP production via glycolysis contributing to PCr resynthesis. Ten human subjects (28 +/- 3 yr; mean +/- SE) performed gated plantar flexion exercise bouts consisting of one contraction every 3 s for 90 s (low-intensity) and three contractions every 3 s for 30 s (high-intensity). In a parallel gated study, the sciatic nerve of 15 adult male Sprague-Dawley rats was electrically stimulated at 0.75 Hz for 5.7 min (low intensity) or 5 Hz for 2.1 min (high intensity) to produce isometric contractions of the posterior hindlimb muscles. [(31)P]-MRS was used to measure relative [PCr] changes, and nonnegative least-squares analysis was utilized to resolve the number and magnitude of exponential components of PCr recovery. Following low-intensity exercise, PCr recovered in a monoexponential pattern in humans, but a higher-order pattern was typically observed in rats. Following high-intensity exercise, higher-order PCr recovery kinetics were observed in both humans and rats with an initial fast component (tau < 15 s) resolved in the majority of humans (6/10) and rats (5/8). These findings suggest that heterogeneity of oxidative capacity among skeletal muscle fibers contributes to a higher-order pattern of PCr recovery in rat hindlimb muscles but not in human triceps surae muscles. In addition, the observation of a fast component following high-intensity exercise is consistent with the notion that glycolytic ATP production contributes to PCr resynthesis during the initial stage of recovery.  相似文献   
996.

Background and Aims

Myrica rivas-martinezii is a critically endangered endemic of the laurel forest of the Canary Islands and co-occurs very close to M. faya. Some authors suggest that M. rivas-martinezii and M. faya are two morphs of the same species, so molecular markers were used to estimate the levels and structuring of genetic variation within and among natural populations in order to evaluate genetic relationships between these two congeners.

Methods

Six polymorphic microsatellite (simple sequence repeat, SSR) markers were used to determine the genetic diversity and the genetic relationship between both Myrica species.

Key Results

Most of the natural populations analysed were in Hardy–Weinberg equilibrium for both taxa. Analysis of molecular variance (AMOVA) for both species revealed that most of the genetic variability detected was contained within populations (92·48 and 85·91 % for M. faya and M. rivas-martinezii, respectively), which it is consistent with outcrossing and dioecious plants. Estimates of interpopulation genetic variation, calculated from FST and GST, were quite low in the two taxa, and these values did not increase substantially when M. rivas-martinezii and M. faya populations were compared. The UPGMA dendrogram based on Nei''s genetic distance clustered the populations by their island origin, independently of taxon. In fact, the mixture of individuals of both taxa did not appreciably disrupt the intrapopulational genetic cohesion, and only 3·76 % variation existed between species.

Conclusions

All the results obtained using molecular markers indicate clearly that both taxa share the same genetic pool, and they are probably the same taxa. Considering that M. rivas-martinezii is classified as at risk of extinction, there should be a change of focus of the current management actions for the conservation of this putatively endangered Canarian endemic.Key words: Canary Islands, conservation genetics, microsatellites, Myrica rivas-martinezii, Myrica faya, plant conservation  相似文献   
997.
998.
Microbial transglutaminase (EC 2.3.2.13) (mTGase) catalyses a calcium-independent acyl-transfer reaction in which -(γ-glutamyl)lysine bonds are formed using the γ-carboxyamide groups of peptide-bound glutamine residues and the amino group of lysine side-chains. Here we present a comparative study on alternative lysine and glutamine substitutes in mTGase catalysis. A homologous series of ω-amino acids, serving as lysine substitutes, was incorporated into carbobenzoxy-l-glutaminylglycine (CBZ-Gln-Gly). The rate constants and particular conversion rates increased with increasing chain length. As for the glutamine substitutes, adipic diamide, glutaric monoamide, and glutaric diamide were converted with monodansylcadaverine (DNS-cadaverine) under mTGase catalysis. For the synthetic glutamine substitutes, the substrates of natural chain length, glutaric mono- and diamide, are better converted than the longer adipic diamide indicating that the window of opportunity seems to be smaller. Synthetic substrates, serving as amine acceptors, offer new opportunities in the field of transglutaminase-catalysed reactions.  相似文献   
999.
1000.

Introduction

The aim of this study was to determine a low disease activity threshold - a 28-joint disease activity score (DAS28) value - for the decision to maintain unchanged disease-modifying antirheumatic drug (DMARD) treatment in rheumatoid arthritis patients, based on expert opinion.

Methods

Nine hundred and sixty-seven case scenarios with various levels for each component of the DAS28 (resulting in a disease activity score between 2 and 3.2) were presented to 44 panelists. For each scenario, panelists had to decide whether or not DMARD treatment (excluding steroids) could be maintained unchanged. In each scenario, for decision, the participants were given the DAS28 parameters, without knowledge of the resultant DAS28. The relationship between panelists' decision, DAS28 value, and components of the score were analysed by multiple logistic regression analysis. Each panelist analysed 160 randomised scenarios. Intra-rater and inter-rater reproducibility were assessed.

Results

Forty-four panelists participated in the study. Inter-panelist agreement was good (κ = 0.63; 95% confidence interval = 0.61 to 0.65). Intra-panelist agreement was excellent (κ = 0.87; 95% confidence interval = 0.82 to 0.92). Quasi-perfect agreement was observed for DAS28 ≤ 2.4, less pronounced between 2.5 and 2.9, and almost no agreement for DAS28 > 3.0. For values below 2.5, panelists agreed to maintain unchanged DMARDs; for values above 2.5, discrepancies occurred more frequently as the DAS28 value increased. Multivariate analysis confirmed the relationship between panelist's decision, DAS28 value and components of the DAS28. Between DAS28 of 2.4 and 3.2, a major determinant for panelists' decision was swollen joint count. Female and public practice physicians decided more often to maintain treatment unchanged.

Conclusions

As a conclusion, panelists suggested that in clinical practice there is no need to change DMARD treatment in rheumatoid arthritis patients with DAS28 ≤ 2.4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号